skip to main content


Search for: All records

Creators/Authors contains: "Wolf, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study explores how the interplay between data analysis and model design shifts 6th-grade students' understanding of diffusion from simple to sophisticated mechanistic reasoning and from non-canonical to canonical ideas about diffusion. Using mixed-methods qualitative analysis, we determine students' mechanistic reasoning and ideas about diffusion at five different points in a curricular sequence using a new tool for computational modeling called MoDa. With this data, we present a framework for the relationship between students' developing mechanistic reasoning and their canonical understanding, suggesting that they develop independently. Further, we illustrate how the computational modeling environment, MoDa, used in this study pushed students' mechanistic reasoning toward sophistication. Moreover, in allowing them to explore non-canonical mechanisms, MoDa supported their convergence on canonical scientific ideas about diffusion. 
    more » « less
  2. When Earth-skimming tau neutrinos interact within the Earth, they generate upgoing tau leptons that can decay in the atmosphere, forming extensive air showers. The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a novel detector concept that utilizes a radio interferometer atop a mountain to search for the radio emission due to these extensive air showers. The prototype, located at the White Mountain Research Station in California, consists of 4 crossed-dipole antennas operating in the 30-80 MHz range and uses a directional interferometric trigger for reduced thresholds and background rejection. The prototype will first be used to detect down-going cosmic rays to validate the detector model. A Monte-Carlo simulation was developed to predict the acceptance of the prototype to cosmic rays, as well as the expected rate of detection. In this simulation, cosmic ray induced air showers with random properties are generated in an area around the prototype array. It is then determined if a given shower triggers the array using radio emission simulations from ZHAireS and antenna modelling from XFdtd. Here, we present the methodology and results of this simulation. 
    more » « less
  3. Abstract

    IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of ≥0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events’ error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3σ, which confirms previous IceCube studies. When correcting for 122 test positions, the globalp-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 × 10−15(TeV cm2s)−1at 90% confidence assuming anE−2spectrum. This corresponds to 4.5% of IceCube’s astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.

     
    more » « less
  4. A<sc>bstract</sc>

    Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb1ofppcollision data at$$ \sqrt{s} $$s= 13 TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be$$ {1.04}_{-0.09}^{+0.10} $$1.040.09+0.10. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with aWorZboson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with ap-value of 93%. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Abstract

    This paper presents a search for dark matter,$$\chi $$χ, using events with a single top quark and an energeticWboson. The analysis is based on proton–proton collision data collected with the ATLAS experiment at$$\sqrt{s}=$$s=13 TeV during LHC Run 2 (2015–2018), corresponding to an integrated luminosity of 139 fb$$^{-1}$$-1. The search considers final states with zero or one charged lepton (electron or muon), at least oneb-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state,$$H^{\pm }$$H±, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle,a:$$H^{\pm } \rightarrow W^\pm a (\rightarrow \chi \chi )$$H±W±a(χχ). Signal models with$$H^{\pm }$$H±masses up to 1.5 TeV andamasses up to 350 GeV are excluded assuming a$$\tan \beta $$tanβvalue of 1. For masses ofaof 150 (250) GeV,$$\tan \beta $$tanβvalues up to 2 are excluded for$$H^{\pm }$$H±masses between 200 (400) GeV and 1.5 TeV. Signals with$$\tan \beta $$tanβvalues between 20 and 30 are excluded for$$H^{\pm }$$H±masses between 500 and 800 GeV.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024